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Dynamic Fracture Toughness
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University of Washington
Department of Mechanical Engineering
Seattle, Washington 98195

ABSTRACT

Dynamic fracture toughness versus crack velocity relations of Homalite-100,
polycarbonate, hardened 4340 steel and reaction bonded silicon nitride are
reviewed and discrepancies with published data and their probable causes are
discussed. Data scatter in published data are attributed in part to the
observed fluctuations in crack velocities. The results reaffirmed our previous
conclusion that the dynamic fracture toughness versus crack velocity relation
is specimen dependent and that the dynamic crack arrest stress intensity factor

is not a unique material property.

INTRODUCTION

Since Rells and Post [11, with the help of Irwin [2], determined the crack
driving force, i.e. the dynamic stress intensity factor, and the crack velocity
in fracturing photoelastic plates, numerous attempts have been made to relate
these two quantities. The dynamic fracture community’s interest in this
relation is demonstrated by the fact that six out of the seven review papers
dealing with the experimental aspects of dynamic fracture mechanics in the
recent issue of the International Journal of Fracture [3]1 refer to the
uniqueness or lack thereof in the dynamic stress intensity factor versus crack

velocity relation and/or in the dynamic crack arrest stress intensity factor.

The survey paper by Dally et al (4] describes the major findings to date and




indicates possible sources of experimental errors which may have lead to the
current controversies on this subject.
The purpose of this paper is to present additional experimental results,

some of which were obtained by the authors and their colleagues over the past

decade, on dynamic stress intensity factor versus crack velocity relations in

ff the context of the current controversy. Throughout this paper, the measured/
' computed dynamic stress intensity factors are referred to as the dynamic

ii fracture toughness. Thus the driving force, i.e. the dynamic stress intensity

, factor, is tacitly equated to the material resistance to dynamic crack growth,

i; i.e. dynamic fracture toughness.
y DYNAMIC PHOTOELASTIC RESULTS

Although photoelastic polymers, such as Homalite-100 and epoxy, are not

primary structural material, dynamic photoelasticity and caustics have been
i used in the past decade and half to uncover the basic principles which govern
S; dynamic fracture mechanics. The dynamic fracture toughness, Kipr versus crack
o velocity, a, relations, which have been obtained through extensive fracture
testing of polymers, showed that the the terminal crack velocity is test
specimen dependent while the "near vertical stem” of these relations is either
a unique [5] or a nonunique (6,71 material property. The latter is in
agreement wWwith the conclusion derived by one of the authors several years ago
[8.9). The dynamic photoelastic data used to support this conclusion has been
reevaluated in this paper by an updated data processing procedure which
incorporates higher order terms of the dynamic crack tip stress field.
Figures 1 and 2 show the KID versus a relations for Homalite-100 and
polycarbonate fracture specimens. No attempt was made to fit an average Kjp

versus a curve through the wide scatter of data generated from various batches

iﬁ of Homalite-100 and polycarbonate sheets tested over a period of ten years.
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Figure 1 shows that the scatter bands about the imagined vertical stems of the
dynamic tear test (DTT), single edge notched (SEN), modified compact (M-CT) and

wedge-loaded rectangular double cantilever beam (WL~RDCB) Homalite-100

specimens are similar to those shown in [7]. However, differences in the
minimum dynamic fracture toughness, K., of the vertical stems of ‘the DIT and
SEN specimens are larger than that reported in [6]1. The difference in Kip for
the more ductile WL-RDCB and DIT polycarbonate specimens is about 10 percent
and is in agreeement with the general observation by Rosakis et al [101.

Figure 3 shows the KID versus crack extension relations of four SEN

specimens subjected to different fixed grip loading condition [9]1. Also shown
are the corresponding static stress intensity factor. This figure, which is
similar to the well-publicized results of Kalthoff et al (111, demonstrates

that the dynamic crack arrest stress intensity factor, Kgym is a constant for

a'
stat
the same specimen while the static crack arrest intensity factor, KIa , varies

with the crack initiation condition.

SCATTER IN Ky VERSUS a RELATION

Since the above photoelastic results are in general agreement with the
caustic results, the published discrepancies in the Kip versus a results cannot
be attributed to the differences in the experimental procedures alone.
However, the discrepancies could be attributed in part to the size of the crack
tip region used for data reduction in the presence of stress wave effects [12].
The caustic method by definition and the authors’' photoelastic method by choice
had restricted the crack tip region to within 5 mm of the crack tip but outside
of the nonlinear region of about 1 mm [13] surrounding the crack tip. The
dynamic photoelastic results in [4] are derived from larger crack tip regions

with the use of larger number of higher order terms in the crack tip stress




D T T e —————

) MR LT T— . Ly " "y s T ——

Page 4

field. Such data reduction procedure will yield accurate stress intensity
factors under static loading. On the otherhand, the dynamic isochromatics in a
larger crack tip region would be less sensitive to small perturbations in the
dynamic stress intensity factor as shown in a previous numerical experiment
[8]. The combined effect of the large crack tip region, in which measurements
were made, and the large fracture specimens (4], which are shown in the right
half of Figure 4, would minimize any oscillations in the KID' In contrast, the
stress wave effect is more severe in the smaller fracture specimens, which is
shown in the left half of Figure 4, and the resultant oscillations in Kjp is
more readily detected when a smaller crack tip region is used in data
reduction.

The experimental errors involved in crack velocity measurements have been
discussed in [4,12,151 with [4] suggesting the use of ultrasonic fractography
[16] for increased accuracy. Such crack velocity measurements (171 were made
on CT, SEN, 3-point bend and Charpy polymethyl methacrylate (PMMA) specimens
approximately one half the size of the smallest WL-RDCB specimen in Figure 4.
The qualitative changes in the crack velocities with crack extension in the
SEN, CT and 3-point bend specimens are similar to those reported in [18,19,203,
respectively. Moreover, the crack velocities, which were determined from the
discrete Cranz-Schardin photographs, ultrasonic fractography and streaking
photography did not exhibit any unusual perturbation in the otherwise gradually
varying crack velocities in these polymeric materials. Figure 5 shows the
experimental setup and a typical streaking photograph [191 used to determine
the continuous change in crack velocity in a fracturing polycarbonate modified
compact (M-CT) specimen. While the crack velocity measurements, which were
made directly from the Cranz-Schardin photographs may not be accurate, the
results appear to be in qualitative agreements with those obtained by the more

accurate ultrasonic fractography {171 and streaking photography [191].

.........................................
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The small but sharp changes in crack velocities, which are comparable to
those reported in [12]1, were observed in the Charpy specimens [17] which were
subjected to severe stress wave effects. As will be shown later, such
discontinuous crack velocities was also observed in small hardened 4340 steel

and ceramic specimens where the stress wave effect is pronounced.

Experimental-Numerical Procedure

The crack tip state of stress of a propagating crack in opaque or optically
insensitive material has been determined by photoelastic coating method (211
and the more popular caustic method. An alternate procedure is to combine
experimental and numerical techniques by using measured crack extension history
interactively with a dynamic finite difference or finite element program in its
generation or propagation phase [22]. The latter propagation analysis was used
extensively by the Battelle group [23] to study the dynamic crack toughness and
arrest charateristics of steel [24]1 and by one of the authors and his colleague
to study the nonlinear fracture response of concrete [25]1. The former
generation analysis has been used to study the dynamic fracture response of
glass [26]1 and reaction bonded silicon nitride [25].

The above hybrid experimental-numerical procedure was used to determine
the KID versus a relation for 4340 steel hardened to Rockwell C 44. The
dynamic crack extension histories in four wedge-loaded modified double
cantilever beam specimens (WL-MDCB), shown in Figure 6 (a), and with a chevron
starter notch were measured by a KRAK-GAGE* and FRACTOMAT.* Figqure 7 shows
typical crack extension records of two fracturing 4340 WL-MDCB specimens. The
initial and slower crack propagation in the chevron notch specimens is followed

by rapid crack propagation and subsequent deceleration. The latter crack

*TTI Division, Hartrum Corp. Chaska, MN.
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{‘ deceleration is interrupted by a number of short intervals of crack arrest
where the average time between each crack arrest coincides with the average
transit time of shear wave from the crack tip to the lateral edge of the
specimen and back.

N Such intermittent crack propagation is more pronounced in the blunt notch
i; 4340 WL-MTDCB specimen, which is heat treated to a hardness of Rockwell C 52.
;‘ Figqure B shows the crack extension history with crack arrest intervals
indicated by arrow marks. Such intermittent crack arrests, as long as 20
microseconds, were reported by Van Elst (28] and de Graaf {291, who used
streaking photography to record continuous crack extension in Robertson type
low-carbon steel specimens. Ravi-Chandar et al {7] and Rosakis et al [101 also
reported the presence of discontinuous crack velocities in their highly

(: dynamically loaded specimens.

Returning to the hybrid experimental-numerical procedure, an average of
the measured crack extension histories, which are shown in Figure 9, without
crack arrest of four 4340 steel WL-MTDCB specimens was then used to drive a
dynamic finite element code in its generation mode and the dynamic fracture
parameters werc determined.

Figure 10 shows the KID versus crack extension relation as well as the
corresponding static stress intensity factor in this high strength 4340 steel
WL-MTDCB specimen. Figure 11 shows the Kip versus a relation for this study
as well as that of Rosakis et al [101. The remarkable agreement between the
two indcpendent results could be due in part to the similarities in specimen
:3 geometries.

Despite the differences in KID versus a relations, a vertical stem in

the Kjp versus a relation always existed in the photoelastic polymers and 4340

steel specimens discussed so far. However, limited dynamic fracture studies of
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extremely brittle materials, such as glass and str.ctural ceramics {26,27,301,

show that K, and hence the vertical stem in the KID versus & curve does not

Im
exits in some materials. Fiqure 12 shows the KID versus A relation of reaction
bonded silicon nitride WL-MIDCB specimens loaded to fracture under both static
and dynamic conditions. The specimen geometry is identical to that shown in
Figure 6 (a) with Figure 6 (b) showing the dynamic loading arrangement. HWhile
the crack propagating under static loading had attempted to arrest, as shown in

Figure 12, the same crack propagating under dynamic loading showed little

tendency for arresting.

CONCLUSIONS

As profoundly stated by many authors in [31, the controversy regarding the
uniqueness or lack thereof in the KID versus a rclation is far from being
settled. HWhile available experimental results indicate that in the absence of
stress wave effects, such as in infinitely large fracture specimen under benign
loading, KID versus & relation may possess a unique KIm or a vertical stem.
Such unique vertical stem is not observed in dynamic fracture specimens of
smaller size and/or under dynamic loading.

Comparative study of various experimental data shows that the consistency
in data scatter cannot be totally attributed to experimental errors and that
the intermittent crack arrest and the discrete changes in crack velocity are

caused by the reflected stress wave.

DISCUSSTON

In the pursuit of the above uniqueness controversy, we pose the question
“for what reason?" The end use of the sought Kjp versus a relation is as the
fourth constitutive equation for estimating the dynamic fracture response of an

elastic solid. Limited numerical experiments show that the arrest crack length




P
-, P ST B

nird

v
'ﬁ"j""

AN rﬁ'

'I

" Page 8

of a propagating crack is obviuosly governed by K, [31-34]1. For a dynamically
loaded specimen or in the presence of severe stress wave effects, however,
small differences in Kj, may not cause large differences in the arrest crack
length while the same difference in Kj,; may cause large differences in arrest

crack length in the absence of stress wave effects.
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